
Loosely Coupled Yet Highly Cohesive
Steven Bucksbaum, February 5, 2011

Where Change Does Not Mean Broken

Strive for low coupling and high cohesion: What does that even mean? Coupling means that something is

depending on something else, multiple things are tied together. Cohesion means (in terms of information

passing between modules) ... well, maybe the person asking the question heard something about it in high

school chemistry and can recall it has something to do with sticking together. Maybe they don't know at all.

Technical Examples

C#: Use reflection, dynamically search for an assembly and then dynamically instantiating an object in that

assembly. The assembly can change (code changes made) without recompiling any of the dependent

assemblies. Heavy reliance on reflection in C# will noticeably slow down the program.

Web Services: Returning an XML string. An attribute can be added to the XML string with out “breaking” the

calling client who has to interrogate the returning XML string.

C++: Dynamically Linking to a DLL. Not often done, but the option is there.

COM: Microsoft’s Common Object Model (COM) has a medium level of both cohesion and coupling. The

calling program can dynamically link to the interface but is must understand the both the interface the data

exchange.

CORBA: Common Object Request Broker Architecture (CORBA) allows distributed objects to interoperate. A

competing technology to Microsoft’s COM and DCOM

Seek High Cohesion:

Coincidental cohesion (worst) is when parts of a module are grouped arbitrarily (at random); the parts have no

significant relationship (e.g. a module of frequently used functions).

Logical cohesion is when parts of a module are grouped because they logically are categorized to do the same

thing, even if they are different by nature (e.g. grouping all I/O handling routines).

Temporal cohesion is when parts of a module are grouped by when they are processed - the parts are processed

at a particular time in program execution (e.g. a function which is called after catching an exception which

closes open files, creates an error log, and notifies the user).

Procedural cohesion is when parts of a module are grouped because they always follow a certain sequence of

execution (e.g. a function which checks file permissions and then opens the file).

Communicational cohesion is when parts of a module are grouped because they operate on the same data (e.g.

a module which operates on the same record of information).

Sequential cohesion is when parts of a module are grouped because the output from one part is the input to

another part like an assembly line (e.g. a function which reads data from a file and processes the data).

Functional cohesion (best) is when parts of a module are grouped because they all contribute to a single well-

defined task of the module

Seek Low or Loose Coupling:

Content coupling (high) is when one module modifies or relies on the internal workings of another module

(e.g. accessing local data of another module). Therefore changing the way the second module produces data

(location, type, timing) will lead to changing the dependent module.

Common coupling is when two modules share the same global data (e.g. a global variable). Changing the

shared resource implies changing all the modules using it.

External coupling occurs when two modules share an externally imposed data format, communication

protocol, or device interface.

Control coupling is one module controlling the logic of another, by passing it information on what to do (e.g.

passing a what-to-do flag).

Stamp coupling (Data-structured coupling) is when modules share a composite data structure and use only a

part of it, possibly a different part (e.g. passing a whole record to a function which only needs one field of it).

This may lead to changing the way a module reads a record because a field, which the module doesn't need, has

been modified.

Data coupling is when modules share data through, for example, parameters. Each datum is an elementary

piece, and these are the only data which are shared (e.g. passing an integer to a function which computes a

square root).

Message coupling (low) is the loosest type of coupling. Modules are not dependent on each other, instead they

use a public interface to exchange parameter-less messages (or events, see Message passing).

No coupling [is when] modules do not communicate at all with one another.

